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ON RULES BASED ON SAMPLE MEDIANS
FOR SELECTION OF THE LARGEST

LOCATION PARAMETER*

Shanti S. Gupta
Purdue University

and
Ashok K. Singh

Purdue University and National Institute of Env~ronmenta1
Heal th Sc iences , Research Triangle Park, NC

1. Introd uct Ion

Many of the classical statistical procedures which are superior to their

competitors under the assumed model have one drawback, name ly, that their
behavior is seriously affected if a few gross errors are rresent in the sa mple.
For example, consider the problem of estimation of the mean e of a univarlate

norma l population . It Is wel l known that the sample mean is uniformly minimum

variance unbiased estimate of e, but it is not a very good estimate if there are

gross errors in the sample. Hodges and Lehmann (1963) have proposed a class of

estimates for the location parameter based on rank test statistics; the estimates

N belonging to this class are approximately normally distribjted , provided the sample

size is sufficiently large. Gupta and Huang (1974) have investigated selection

procedures based on one-sample Hodges-Lehmann estimates of location for the

problem of selecting a subset containing the largest t (1 < t k) location

parameters from k (k > 2) given populations , assuming the sample size is large.

An important member of the class of Hodges-Lehmann estimates Is the sample

median. Apart from having a simple analytic form for its distribution , the

sample median as an estimate of location has some other properties. Intuitively,

a reasonable estimate of location should have a distribution which , in some sense ,

*Thjs research was supported by the Office of Naval Research contract N000l4-75-C-0455
at Purdue University . Reproduction in whole or in part is permitted for any purpose
of the United States Government.
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is centered on the true location parameter value. It is shown by Hodges and

Lehmann (1963) that the sample median has a distribution which is syninetric about

the true parameter value if the underlying distribution is syninetric, and In case

the underlying distribution is not synrietric, the sample median is a median

unbiased estimate of location, i.e., the median of its distribution coincides

with the true location parameter. In this paper we invescigate a procedure

based on sample medians for selection of the largest location parameter of

k (> 2) populations.

In Section 2.0 some notations used in this paper are introduced. In

Sections 3 and 4 the problem of selecting a subset containing the largest of

k ( 2) location parameters is considered, and a selection rule based on sample

medians is proposed and investigated.

Section 5 consists of investigation of selection rules , which are slight

modifications of the rule proposed in Section 3, for the normal means . In

Section 5.3 the proposed rule based on sample medians is compared to Gupta ’s

rule based on sample means [see Gupta (1965)], when the normal means are

equally spaced. It appears from the numerical computations that, as expected,

Gupta’s rule is superior. In Section 5.5 we define and comp~ate the asymptotic

relative efficiency (ARE) of rules based on sample medians relati ve to rules

based on sample means. For the normal case the medians procedure is inferior

to the means procedure, the ARE being 2/n. For the contaminated normal population ,

however, the medians procedure fares better than it does in the normal case, as

the ARE is found to be an increasing function of the variance of the contaminating

normal por”1ations. In Section 5.6 a test of homogeneity bated on sample medians

i s propo~ a relation between the test and the selection rule of Section

5.1 is estab .ed . Section 5.7 deals wi th the distri bution of a statistics

useful in some selection and ranking problems , and its percentage points are computed. 

~~~~~~~~~~ * - -  ~~~~ * .~~~~~~~~~~ -~~~~~~~~~-~~~~~~~~~~~~ - --
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As mentioned above , the means procedure is better thLn the medians procedure

if the underlying distributions are normal . This may be due to the fact that

the normal density has short tails , and hence the probability of getting extreme

observations is very small. In case the underlying distributions have longer

tails, for examp le, logistic and double exponential , extreme observations are

more frequent and they have a serious effect on the sanpie means, but not on

the sample medians. In these situations the medians procedure should perform

better than in the normal case. This heuristic argument is strengthened by

the fact that, for logistic populations, the ARE is ~
2,l2 and for double

exponential populations , the ARE is 2. This is the subject of Section 6.

2.0 Preliminaries and Notations

Let X1,...,X211.~1 (m > 1) be (2ni+l ) independent obserw~tions from a

population wi th cumulative distribution function (cdf) F(x,O) and probability

density function (pdf) f(x o), x,e E IR , the real line . Then the sample

median X is given by

where X [1) <...< X[21~ 1] are the ordered X1 .

The pdf of X is

g(x,e) = (2m+ l~ ! [F(X ,6)]m[l_F(X ,6))mf(X,O) (2.0.1)
(ml )

and the corresponding cdf is

G(x ,e) = Cm f , ) m F ,e)]mf ,e)du ~ ~ (2.0.2 )

= IF(X ,O) (m91 ,m+l) 

I
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where Iy(~.~) is the incomplete beta function:

I (p,q) = ~ uP I (~_u)~~ldu/9(p,q), 0 < y  < 1 , p,q > 0. (2.0.3)y

The following result from Karlin (1968) will be used in later sections:

Letmna 2.0.1: If f(x,O) has monotone likelihood ratio (PILR) in x and 0, then

g(x,e) given by (2.0.1) has MLR in x and 0.

Note, the above result is true for the distribution of any order statistic.

3.0 On Procedures Based on Sample Medians for Selection of the Largest Location
Parameter.

Let wl,. 
~ k be k independent populations with cdf’s F(x—01),. ..,F(x—ek),

respectively. Let X11,...,X1~ be a sample of size n = 2m+1 (m ~ 1) from

1 1 ,... ,k. Then the pdf g(x-e1) and the cdf G(x-e1) of the sample median

from can be obtained from (2.0.1) and (2.0.2) by substituting f(x ,01) f(x-o.~)

and F(x,o1) = F(x—e 1).

For selecting a subset containing the population w [k] associated with the

largest location parameter e[k]~ so that the probability of selecting wEk] in the

subset is at least a preassigned constant P~ (1/k < < 1) , we consider the

following procedure :

R: select 1ff 
~ 

X [k]_d (3.0.1)

where d > 0 i s chosen to sati sfy the bas ic P*_conditlon .

Let X (j )  be the (unknown) sample median which corresponds to the i-th

ordered parameter °[i] (i = 1 ,... ,k) . Then

P(CSIR) = P(X (k) ~ 
X [kf d)

~ k-i
= 

(2m+1~ l 1 ( ‘~ ‘F + +8 ) (m+l~m+l)](F(u)] (l—F(u)]
(ml) —

~~~ j= 1 (u [k]~
8[j)

•f(u)du (3.0.2)
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It is clear from the expression (3.0.2) that the infimum of the probability

of a correct selection occurs when all the location p rameters e
~ 

are equal , and

hence the constant d is given by

= (3.0.3)

3.1 Expected Size of the Selected Subset

The size of the subset selected by the rule R is a random variable which

takes values in the set {1,...,kJ. It is desirable that the size of the selected

subset be small , and also the ranks of the selected populations be large, where

the population associated with °~i] 
is given rank 1 (1 = l,...,k). The expected

size of the selected subset and expected sum of ranks Of selected populations

have been proposed as criteria of efficiency of selection rules [see for example,

Gupta (1965) ].

Let S and Sr be random variables denoting the size of the selected subset

and the sum of ranks of the selected populations , respectively. Then

Ee (S IR) = 

~ 
P~(flR) (3.1.4)

* 
and Eo(Sr IR) = 

~ 
i P6 ( IIR) (3.1.5)

‘\ where Pe ( iIR) is the probability with which the rule R selects the population

associated wi th 
~~~~ 

I = 1,2,. ..,k , and is given by

P0 (i~R) = 
~~~~~~

.(F(u)]m[l..F(u))mf(u)du (3.1.6)



- - --

6

3.2. Some Properties of the Rule R

( 1) Upper bound on E0(SIR)

We assume that f(x-e) has MIR in x and a. Then It fol lows

from Lenuna 2.0.1 that g(x- o) has MLR in x and 0. Hence from

Theorem 1 of Gupta (1965), we have

Max E0(SIR) Max E0 (SJ R) = kP*

where 
~0 

{(e1~
...,ek) E e: 01 ..

~~~~ 
Ok}.

(ii) Monotonicity

It is clear from the expression (3.1.6) that the rule R is

strongly monotone [see Santner (1975)), i .e.

+ in 0r1, if remaining component,
‘ ~‘ of o are kept fixed

P0(iIR) Is 
—

+ in j#i if remaining component,
of e are kept fi xed

The following two properties of R are ininediate consequences of strong

monotonici ty:

(a) R is monotone: P0(iIR) > P
0(j~R), 1 < j  < i < k

(b) R is unbiased: P0(kIR) > P0(1IR) , 1 < i < k

(iii) Minimaxity with Respect to the Expected Subset Size Among Rules
Based on Medians

A selection rule R* is said to be minimax with respect to S if

sup E0(SIR*) = inf sup E8(SIR ’)
8 -  R’~~~ -
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where the infimum is taken over all selection rules R’ which satisfy the

p*.condj ti on.

The pdf g(x,e) Is clearly of location type and it has MLR in x and 0. It

follows from Theorem 1.4.2 of Berger (1971) that the selection rule R Is minimax

with respect to S among all rules based on sample medians.

4.0 Selection of a Subset Containing all Location Parameter Populations Better
Than a Control

Suppose we have k+l independent populations ‘O”l’•• ”k with densities

f(x,e0), f(x,e1),... ,f(x,ek), respectively. The population ‘0 Is a standard

or control population. The population w~ Is said to be better than the control

population it
0 

if > 00. We are interested in the subset of populations which

are better than control . Gupta and Sobel (1958) have considered the above problem

for several distributions and have investigated rules basei on sufficient statistics

which select a subset such that all populations better than the control are

included in the subset with probability at least P~, where ~~* (0 < P~ < 1) is

a preassigned constant. We will consider the case of location parameter populations ,

when f(x,e1) = f(x-e1), I = 0,1 ,... ,k, and investigate a rule based on sample

medians . The parameter °~ 
may or may not be known. We consider these two cases

separately:

(a) G
O 

known:

Here we are given sample medians of n 2m+l independent observations from

~ 
(I = l ,2,...,k). Consider the rule Ra defined as follows :

Ra: Select 
~i 

iff > o0-a (4.0.1)

where a is the smallest value satisfying the P*_condition.

Let k1 denote the number of populations that are better than (as good as)

the control , and k2 denote the number of populations for which e1 < 80. Then
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+ k2 
= k. Also let primes ( 4 )  refer to the k1 populations better than

control . Then we have

-

P(CS IR ) ii P(X~ > 00-a)a i=l
k1
n [1—I~, ,~(m+ l ,m+1)].

1=1

Clearly

inf P(CS IRa) = (Il....F( a) (m+l4 n
~
+l)] (4.0.2)

In case k1 is not known, a lower bound for P(CS IRa) can be obtained by

substituting k1 = k Is (4.2), and thus a conservative value of the constant

a = a(P*,m ,k) can be obtained from the following equation :

= (p *) l Ik (4.0.3)

Expected Size of the Selected Subset.

The size of the subset selected by the rule Ra is a random variable

which takes values in the set {0,l ,... ,k}. Letting S denote the size of a

subset selected by a selection rule , the expected value of S can be looked

upon as a measure of the performance of the rule [see Gupta (1965)]. Now

k
E(SIRa) = is selected}

i=l

k
= P{X1 > e0-a}1=1

k
= [‘~ C I A  ~(in+l ,m+lfl (4.0.4)

=1 ~~

_ 
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Let 011) 012] < ... < °[k) be the ordered parameters and let

be the probability that the rule Ra selects the population associated with

i = 1 ,... ,k. Then

E(SIR ) 
i~ l 

P1i](R) (4.0.5)

4.1. Probability that the Selected Subset Contains Only the Populations Better
Than the Control.

Assume that k1 of the given k populations have parameter 0+6 and the

remaining populations have parameter 0, where 0,6 and e0 are such that

0+6 > > e. In this situation it is meaningful to ask for the probability

that the rule select, exactly k1 populations [cf. Gupta (1965)). We will

consider the special case k1 = 1 . Letting P1(Ra) denote the probability of

selecting exactly one population , we have

Pi (Ra) = 
~ 

P(M~ > e0—a , M~ e0—a , j ~ I , 
j = 1 ,... ,k)

= [1 — 1F(o0—e—6— a) ”~
’1
~
1 [IF(o o a)(m+l ,m+l)]

k_l

+ [1 - 1F(o0—O—a) ’~~~~ 
[IF ( e e o a ) (m+ l ,m+1)][IF (e e a )(m+l ,m+l)]k~

••2

(4.1.1)

In thi s case, the value of a is to be obtained from the equation

= P* (4.1.2)

(b) oo Unknown:

In this case (2m+l) independent observations are taken from w~~ . Let be

the med ian of the sample from it0. We consider the following selection rule:

-j
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Rb : select ~~~~ X0-b (4 .1 .3 )

where the constant b is chosen to satisfy the basic P*_condition.

We have, as in Case (a),

k
P(CSIRb) = ~~~~~~~~

(2m+fl~ i[1_I F(u b)(,n+l ,,n+1)]
k[F(u)]m[l_F(u)]mf~u)du (4.1.4)

(ml) -
~~~

The constant b = b(k,m,P~) Is obtained by equating the right hand side of

(4.9) to P~.

The expected subset size for the rule Rb is obtair.ed as in Case (a).

Remarks:

(i) It can be seen from expression for P(select o~) for rules Ra and Rb that,

in either case

P(select o
~
) > P(select e~) if ~ O~.

• (ii) If -
~ for all i = l ,...,k, and °0 is finite , then E(S) -~~ k in each

* case.

In the following sections we will consider several specific densities

of location type and i nvestigate, in some detail , rules based on sample medians

for selection problems connected with them. As pointed out, earl ier , the

behavior of the proposed selection rule seems to depend on the type of tails

of the underlying distributions . It is known [see, for example , Hajek (1969)]

that among normal , logistic and double exponential distributions , the normal

distribution has the shortest or the thinnest tails , and then come logistic

and double exponential distributions , In that order. Subset selection procedures

based on sample medians for double exponential populations have been investigated

-I
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by Gupta and Leong (1976). McDonald (1977) has investigated a medians procedure

for logistic populations . We will be mainly concerned with normal and double *

exponential populations , but we will include some results for the logistic

distribution.

5.0 Normal Populations

Gupta (1956, 1965) has considered the problem of selecting a subset

containing the largest of several norma l means , and has inv?stigated rules

based on sufficient statistics, namely the sample means, assuming a coninon

known variance . It is well known that the sample mean is a uniformly minimum

var iance unbi ased es timate of the normal mean , and therefore it should provide

a better selection rule than the rule of Section 3. In the next section we

study the normal case in order to get an idea of how far off the medians

procedure is from the means procedure .

5.1. Normal Populations with Comon Known Variance: A Procedure Based on
Sample Medians for Selecting a Subset Containing the Largest Normal Mean.

Let lTl,...,
~
tk be k(> 2) independent normal populations wi th means

and a common known variance ~
2 Let 

~ 
be the median o~ n = 2m+l (m > 1)

observa tions from ~~~~ (i = 1 ,... ,k). The pdf g(x ,o1 ) and the cdf G(x e1 ) are

obtained from (2.0.1) and (2.0.2) by the substitution f(x ,e
~
’) = •(x-e 1 ) and

F(x,o1) = s(x-61 ) where ‘i.) and •(•) denote the pdf and cdf, respectively, of

a standard normal distribution.

For the problem of selecting a subset containing the population associated

with the largest mean °[k]’ consider the fol lowing procedure

R1 : Select iff X 1 > - d10 (5.1.1)
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where d1(> 0), the smallest constant to satisfy the basic P*_condition , is

given by the following equation :

~~~~~ 
i:

I,u+dl 
m+l ,flI+l)]~

_ I ,m(u)[l_,(u)]m,(u)du (5.1.2)

5.2. Some Properties of the Rule R1.

The expressions for E0(S(R 1), the expected subset size, and Eo (Sr (R 1 )i the

expec ted sum of ranks , in us ing the rule R1 can be obtained from (3.1.4), (3.1.5)

and (3.1.6) by substituting F(u) = •(u) and f(u) = •(u). Since the normal density

has the MIR property, the rule R1 has all the properties mentioned in Section

3.2 for the general rule R.

5.3. Comparison between R1 and Gupta ’s Selection Procedure Based on Sample Means
• when the Normal Means are Equally Spaced.

Let it 1,. • • ‘
~ k be k independent normal populations wi th means 0, 0+ 6o ,...,

o + (k-l)o~ and a common known variance ~
2, where 6 > 0 is a known constant.

Let (j = 1 ,... ,n) be a sample of size n = 2m+l (m > 1) from it
1 
(1 = 1. ,...,k),

and let X 1 , ~ 
be the medi an and the sample mean of the observat ions from

For the problem of selecting a subset containing the largest normal mean,

namely, 0 + (k-l)oo , Gupta (1965) has proposed the following rule

R : Select ~~~. 1ff .~. 
RrkI - 

da (5.3.1)g 
~~~j  /2m4T

where the constant d satisfying the P*_condltion is given by

= P* (5. 3.2)

It should be observed that , unl ike d1, the cons tant d does not depend on n.

We will compare the rule R1 defined by (5.1.1) and (5.1.3) to Gupta ’s rule Rg~
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Let P(i,k,P*,o ,nfR) denote the probability with which a rule R selects

the population associated with the i-th largest mean (1 = 1 ,...,k). Then

from Gupta (1965) we have

P(I~k4P*~tS 1fl~Rg) = P( i .k.P* ,6vci~IR g)

= f [ n  •(u+d-(j-i)o/~))~(u)du. (5.3.3)
—

~~~ j = 1
j~i

Also , for the rule R1, we have

P(i,k,P* ,6,nIR i ) = (2m+l!~~ 1 H(uIi ,k,P*,6,n)~
m(u)[1_ ~(u)]

m4,(u)du (5.3.4)
(m!) a -~~

where
k

H (ul i ,k,P*,6,n) = 
j~1 .(u+d1

_ (j_i)6)~~~~I7*~~J

Ji’l
Next, let w(k,P* ,6,nIR) and ~y1 (k ,P*,6,nIR) denote the expected sum of

ranks and expected average rank of the populations in the selected subset,

respectively. Then

k
v(k,P*,6,n JR) = ~ iP(i ,k,P* ,s,njR)=kv 1 (k ,P*,6,nIR). (5.3.5)

1=1

Tab les of P( i 4kiP*46v~i]Rg)~ v1 and the expected proportion of the populations

retai ned in the subset (= E(SIRg)/k) are available in Gupta (1965). We have

computed the values of these func tions for R1 for k = 2(l)5,n = 3,5, 6 = 0.5(0.5)5.0

and ~~* = .90, .95. The numerical integration was performed on a CDC 6500 us ing
* 

Gauss-Hermite quadrature based on twenty nodes. These tables are given at the

end of this section . For example , for ~~* = .90, k = 5, n = 3, 6 = l.5/v’~ the

rule Rg based on sample means selects the second best and third best populations

with probabilities .781 and .357, respectively. The cor responding probabilities 
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for the rule R1 are .822 and .467, in that order. The probability of a correct

selection (selecting the best) has to be greater than .90 for both the rules

and Is actually equal to .998 for the rule Rg and .997 for the rule R1. The

expected average rank of the selected subset and the expected proportion of the

populations selec ted in the subset for the rule R
9 
are 1.86 and .441, respectively.

The corresponding values for the rule R1 are 1.995 and .489.

It appears from these tables that the rule Rg based on sample means is

super ior to the rule R1 based on sample medians , and also, as expected, the

performance of Rg relative to R1 improves as sample size is increased.

Remarks:

(1) For fixed ~~* and k

• P(l ,k,P*,s,nIR 1) + in o,’~
P(k,k,P*,6,n IR i) +

(2) For fixed ~~*, i , 6 and n

P(i,k,P* ,6,n~R1 ) + in k, 1 < i < k

(3) For fixed k, ~~* and (i-j)6

u r n  v (k,P*,6,n) = k
n-~c~

(ii) It follows from (5.3.4) and (5.3.5) that

, k ~• (A) ~y(k,P* ,â,n JR 1) > 
(2m+l.~~ ~ if H(uIl ,k,P* ,6,n),m(u)[l_,(u)]m,(u)du
(m!) a i=l —~~

where the function H is as defined in (5.3.4).

(B) ,(k,P* ,6,nIR 1)> 
k(k+1)~2m+l)! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I - - * -- -~~~~~~~—-•
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • * ~~~~~~~~~~ .* -~~~~ 
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5.4. A Selection Rule Based on Medians from Large Samples

Let f(x) be the pdf of a continuous random variable X and let 0 be its

un ique median. Then the distri bution of X , the sample median based on n = 2m+i

(m > 1) independent observations on X , Is known to be asymptotically

N(e ,[4(f(o))2(2m#1))~~) provided certain regularity conditions on f(x) are met
[see Cramer (1946)]. This result will be used to investigate procedures based

on medians from large samples .

Using the notations of Section 2.0, we see that, ~or large samples from

normal population N(01,0
2) I = l,...,k, is approximately distributed as

N(01,iuy
2/2(2m+l)). For the problem of selecting a subset containing the largest

mean 0[k]’ we proposed the following rule:

d av ~R : Select ~~ . iff X. > X r - 2 (5.4.1)2 ~ Lk v2 (2m+T)

where the constant d2 > 0 is given by

= P~. (5.4.2)

Tables of values of d2 satisfying (5.4.2) are available In Bechhofer (1954)

for k = 1(1)10 and in Gupta (1963) for k = 1(1)51 [see Table 1 of Gupta which

gi ves values of d2//~ for n = k-i = 1(1)50].
* 

The express ion for P(i ,k,P* ,6,nIR 2), the probability of selecting the
-

* population associated wi th 
~~~ 

for the rule R2, is

P(i,k,P*,6,nlR 2) ~~~~~~~~~~~~~~~~~~ (5.4.3)

where

h(u{i ,k,P*,6,n) = 

~~ 
s(u+d2+[e 1i3 -e c~3

]
~~~~

r1
~

) (5.4.4)

j$1
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5.5 AsymptotIc Relative Efficiency (ARE) of the Rule R2 Relative to Gupta ’s Rule

In this section we compute the ARE of the rule R2 with respect to Gupta’s

rule in the following two cases: (I) independent normal populations and (ii)

independent contaminated normal population. We conside” the two cases separately.

(i) Independent Normal Populations

Let lTl,...,lrk be k Independent normal populations with means

respectively, and a common known variance a2. Assume that e~ (i = l ,...,k) are

in the following slippage configuration :

(o+ aA i f i = i 0; ~~‘ O u nknown

ei =to i fi~~~i0

The index 
~ 

(1 < i0 < k) is not known. The population it .1 is the best
0

population.

Our interest is in the relati ve performance of the followi ng two selection

procedures:

- - d avc
R : Select it. iff X. > Xr - 

2
1 1 — i k j  ,‘2~

i•

R :  Select ir iff y >~~~~g 1 1 — 1 k ] ,ç

The constants d and d2 satisfying the basic P*_condition are both given

by (5.4.2) and hence we have

= d (5.5.1)

Let 5* be the number of non-best populations in the selected subset.

Then small values of S* are desirable and therefore, consistent with the

basic P*_condition , we would like to keep the expected value of S~ as small

as possible. 
* 

- -*- - - -  --*-•-~~~-*--• - -~~~
--

~~~~
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It is i ntuiti vely clear that the performance of any reasonable selection

rule should improve as the sample size is increased . For a given E (0 < E < 1),

let NR.(E) be the number of observations needed so that

E(S*IRS ) = E (5.5.2)

We will use the following definition of ARE [see Barlow and Gupta (1969)]:

Definition 5.5.1: The ARE of the rule R2 relati ve to the rule Rg is defined

as
NR ~~

ARE (R2, R;e) = u r n  N 
g 

EE+O R2

Now using the definitions of NR (E) and NR(E), it can be shown that2

f [~
(u_

~
v’2NR (€ ) /TT +d) -o (u. AP’NR (E)+d)]~~~

2(u+d)~(u)du = 0 (5.5.5)
-

~~~ 2 g

Using the fact that ~ is strictly increasing,it can be seen from (5.5.5)

that
2 N (E)
_______ = N~(E)

and hence

N( E) 2ARE(R2,R) = u r n  N
R 

,,~~~ 
= — .64.

€+0 R2’ 
/ iT

(ii ) Independent Contami nated Normal Popula tions

Suppose that i n the course of sampl ing from populat ion ~~ (1 = l ,...,k)

something happens to the system and gives rise to sor e wild observations.

Assume that the pdf of can be written as



_ _  
-

~~~~~~~ 
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f(x,o1 ) = ci f~(x,o1 ) + (1—ci )f 2 (x ,o 1), 0 i 1 (5.5.6)

This means that the experimenter is sampling from a population with

pdf f1 (x ,e1 ) lOOci% of the time, and from f2(x,u 1 ) lOO(l-~)% of the time .

The presence of observations from f2(x ,o1) is termed as contamination.

For our discussion we will assume that

f1 (x-o 1) = ~~

I = 1 ,... ,k
~ x-0.

f (x-e.) = —2 1

~~~~~ CT

where b is a positive constant. We will also assume that the means

are in the same slippage configuration as in Case (I).

Now, it is known [see, for example , Rohatgi (1976)] that and both

are asymptotically norma l , each with mean and variances ~2 and ~2, respectively,

where
2 1

l-~~2{
~~+ —}

2-2 = 2~ + (1-~)b] (5.5.8)

For the problem of selecting a subset containing tt’e best populati on,

-
~~~~ cons i der the following two rules :

select iff 
~ 

- d~

R :  select 1ff 
~~~ 

Rik] 
- d* .

It is easily seen that the constants d~ 0 and d* 0 both satisfy

the equation (5.4.2) and hence d~ = d* = d , say . Then as in (1) above , we have

-

L -- * • • • - - • * * - • * * • ‘ *
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2 2

[~÷ 
E~Ej*2~ 

= NR*(E) 
[~~ + (l-ci)b].

2

Hence
€

ARE(R~I R*) = lim NE+O

= ~ [1  + (l-4b]~1 + 1_ uj 2
IT

-* “ -  as b

The above result shows that for - 1 and large values of b the rule

R~ based on sample medians is much better than the rule R~ based on sample

means. In fact , it can be seen from a result in Rohatgi (1976) that the

ARE(R~,R~) is close to 1 when b = 9 and ~ = .915, and as the differences

b-9 > 0 and/or .915- I > 0 increase the rule R~ shows a ~onsiderable improvement

over R~ in terms of the ARE .

5.6 A Test of Homogeneity Based on X[k] 
- X [1 j

Let IT 1 , • ~~ •,11k be k independent norma l populations wi th means 
~~~

respecti vely, and a common known variance ~2• As before, let be the sample

median of n = 2m+l (rn > 1) i ndependent observations fr3m 
~i 

(i = 1 ,.. .,k), and

X [1]~ ... 
~

X [k J be their ordered values. For the hypothesis of homogeneity

H0: 0 1 =

we propose the following test procedure :

Reject H0 if R = X [k] X

[1] 

•. *Y (5.6.1)

where the constant y is obtained from the size-cond ition :

~H 
(R - -,)
0
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Here •~ is the size of the test.

The following theorem gives the constant 
~

- , and also establishes

a relationship between the test given by (5.6.1) and the selection procedure

of Section (5.1).

Theorem 5.6.1

For 0 < ~ < 1 , let y satisfy

Then

~H 
( R > - ~~ < a .
0

Proof: The proof is similar to that of Theorem 6.1 of Gupta and Leong

(1977), and hence omitted .

5.7 On the Distribu tion of the Statistics Associated wi th R1 when the
Underlying Distributions are Normal

Let X .~ (i = 0,1 •k) be sample medians of (k+i) sets of n = 2m+1

(m 1) independent observations from a standard normal distribution .

Define

Z 1 = X~ - 

~~~~ 

(I =

The random variab les Z~ are correlated and the distribution of

Z = max Z. is needed in some ranking and selection problems . For
1— i ~ k 1

standard double exponential populations the distribution of Z has been

compu ted by Gupta and Leong (1977) for selected values of k, n and

Ln this section we give an expression for the distribution function of Z

L .  _  -~~~-~~~~~~~~~~ *
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and also provide a short table for its upper percenta9e points for P~ •
~~~ .75,

.85, .90, .95, .99; k = 2(1)5, n = 3(2)11.

Let F(.) be the cdf of Z. Then

F(z) P(Z z) P ( + Z , i = l ,...,k)

= 
~ 
[!+(Z+X)(m 1 ~

m l )] ~
m(x 1l- x)Im : x d x . (5.7.1)

Computations for upper percentage points of F we—e done on a CDC 6500

using Gauss-Hermite quadrature based on 20 nodes to perform the required

numerica l integration.

6.0 Logistic and Double Exponential Distributions

The logistic distribution is used frequently as a model in economic

demographic problems , and also as a growth curve . The ~ogistic curve

although very similar in shape to the normal curve , is differen t in many

ways. It has a heavier tail than the normal , and it does not belong to the

Pearsonian or Exponential families of distributions [see Patel , Kapadia

and Owen (1976)].

The problem of se1 ection of a subset containing the largest location

parameter of severa l logistic populations has been investigated in detail

by McDonald (1977). For selected values of k, n and ~~* , values of the

constant d required for the rule R have been computed . McDonald has also

compared the medians procedure to the means procedure and has found the

ARE in the logistic case to be u /i2. In this sense the rule based on

sample medians fares a little better in the logistic case , than it does

in the normal means problem .

.

L .  ~~~•
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TAB LE I

Upper 100(l_P*) percentage points of Z max (x . -x 0 ) where
i~ i - k

X0,X 1,... ,X~ are iid sample median random variab les i 1  samples

of size n = 2m+ 1 (m — 1) from the standard normal distribution.

n
L_~~ 

3 ~~~~~~~~~~ 7 _~~~~~~~~~~ J~~_ _ _

.638 .511 .445 .409 .393

.980 .784 .676 .614 .582
1 1.213 .969 .832 .751 .710

1 .558 1.245 1.065 .956 .900
2.208 1.766 1.522 1.398 1.491

.959 .768 .667 .610 .579
1.276 1.019 .876 .792 .744

2 1.493 1.192 1.019 .915 .855
1.816 1.452 1.239 1.105 1.030
2.429 1.943 1.676 1.533 1.606

1.125 .901 .783 .715 .675
1.432 1.142 .980 .884 .828

3 1.642 1.310 1 .117 1.000 .931
1.854 1.563 1 .333 1.184 1.099
2.551 2.040 1.761 1.609 1.671

1.235 .989 .859 .784 .738
1.536 1.223 1.048 .945 .883

4 1.742 1.389 1.182 1.057 .982
2.049 1.639 1.396 1.238 1.145
2.634 2.106 1.819 1.661 1.715

For given k ,n and P~ = .75 (top), .85 (second), .90 (third),
.95 (fourth), .99 (bottom), the entries in this table are the
values of d which satisfy

f Gk(x+d ) g(x) dx =

where G (•) is the cdf and g(•) the pdf of the median of a sample
of size n from a standard norma l population; n > 3 is an odd integer.
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TABLE h A

For the rule R1 and the configuration (‘, , o + ~~~~ ,... , (~ -1 )&~) this
table gives the probabili ty of selecting the norma l population with rank
i when the population witl1 mean e + (i-1)~~ has rank j , j = 1 ,2,... ,k; the
common variance 2 is assumed to be known.

= .90, n = 3

.5 1 .0 1 .5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k i
2 1 .836 .749 .643 .524 .404 .29 1 .196 .123 .072 .039

2 .944 .97 1 .986 .994 .997 .999 1.000 1.000 1.000 1 .000
3 1 .778 .585 .359 .171 .061 .016 .003 .000 .000 .000
2 .882 .828 .745 .640 .521 .400 .288 .194 .121 .070
3 .959 .983 .993 .997 .999 1.000 1.000 1.000 1.000 1.000

4 1 .704 .381 .118 .019 .001 .000 .000 .000 .000 .000
2 .818 .648 .423 .217 .084 .024 .005 .001 .000 .000
3 .907 .865 .793 .697 .583 .462 .344 .240 .156 .094
4 .969 .989 .996 .998 .999 1.000 1.000 1.000 1 .000 1.000

5 1 .612 .193 .019 .001 .000 .000 .000 .000 .000 .000
2 .740 .425 .142 .024 .002 .000 .000 .000 .000 .000
3 .845 .688 .467 .251 .102 .031 .007 .001 .000 .000
4 .923 .88’ .822 .733 .624 .504 .384 .274 .183 .113
5 .975 .992 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000

TABLE l i lA

Fo r the rule R1 and the configura tion ( ,  + ~u ,...,O +(k-l)~a) this table
gives the expec ted average rank of the selected subset (top) and the expected
proportion of the populations selected in the subset (bottom) when the norma l 2population with mean Fs 4-(i -1)c .1 has rank ~~, 

= 1 ,2,... ,k; the common variance
is assumed to be known.

= .90 , n = 3

.5 1.0 1.5 2.0 2.5 3.0 3.5 4. 0 4 .5 5.0
k
2 1.361 1.345 1.307 1 .256 1.199 1.145 1.098 1.061 1 .036 1.019

.890 .860 .814 .759 .701 .645 .598 .562 .536 .519
3 1.806 1.730 1.610 1.481 1.367 1.272 1.193 1.129 1.081 1.047

.873 .799 .699 .603 .527 .472 .430 .398 .374 .357

4 2.234 2.057 1.831 1.634 1.479 1.358 1.261 1.180 1 .117 1.071
.849 .721 .582 .483 .417 .372 .337 .310 .289 .274

5 2.639 2 .323 1 .995 1.745 1.56 1 1. 422 1.311 1.220 1.146 1.091
.819 .637 .489 .401 .346 .307 .278 .255 .237 .223

-
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TABLE J IB

For the rule R1 and the configuration (e, 0 + iS o , . . .  ,u + ( k - i ) ’ ) this table
gives the probability of selecting the normal population wi th rank i when the
population wi th mean ~ + ( i - l )ó~ has rank i, i = l ,2,...,k; the common variance
2 is assumed to be known .

= .95, n = 3

.5 1.0 1.5 2.0 2.5 3.0 3.5 4 .0 4.5 5.0
k i
2 1 .910 .850 .768 .665 .548 .427 .312 .213 .136 .080
2 .974 .988 .995 .998 .999 1.000 1.000 1.000 1.000 1.000

3 1 .871 .718 .500 .277 .118 .037 .009 .001 .000 .000
2 .938 .902 .842 .758 .653 .535 .414 .301 .204 .129
3 .982 .993 .998 .999 1.000 1.000 1.000 1.000 1.000 1.000

4 1 .784 .477 .1 73 .033 .003 .000 .000 .000 .000 .000
2 .875 .732 .517 .292 .126 .041 .010 .002 .000 .000
3 .940 .909 .851 .770 .668 .551 430 .315 .216 .138
4 .982 .994 .998 .999 1.000 1 .000 ‘ .000 1.000 1.000 1.000

5 1 .742 .306 .043 .002 .000 .000 .000 .000 .000 .000
2 .84 2 .565 .235 .052 .006 .000 .000 .000 .000 .000
3 .914 .798 .602 .369 .176 .063 .016 .003 .000 .000
4 .961 .938 .894 .828 .739 .631 .512 .391 .281 .188
5 .990 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE IIIB

For the rule R1 and the configuratio n (o , , + ~., + ( k - l~~~’) this table g ives

the expected average rank of the selected subset ( top ) and the expected proportion
of the populations selected in the subset (bottom) when the norma l population with
mean + (1-l)&u has rank i , i = 1 ,2,... ,k; the coniiion variance 2 is assumed to
be known.

= .95, n = 3

ô~
’n .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

k
2 1. 429 1.413 1.379 1.330 1.273 1.213 1.156 1.107 1.068 1.040

.942 .919 .881 .831 .774 .713 .656 .607 .568 .540
3 1.898 1.834 1.725 1.597 1.474 1.369 1.279 1.201 1.136 1.086

.930 .871 .780 .678 .590 .524 .4/4 .434 .401 .376
4 2 .32 1 2. 16 1 1.938 1.731 1.565 1.434 1.327 1.237 1.162 1.103

.895 .778 .635 .523 .449 .398 .360 .329 .304 .284

5 2.792 2.514 2.178 1.904 1.699 1.543 1.419 1.315 1.225 1.150
.890 .721 .555 .450 .384 .339 .306 .279 .256 .238

4 _~~ * _~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ * _
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TABLE IIC

For the rule R1 and the configurat ion (e , + So ,... ~o + (k-1)o) this table
gives the probability of selecting the norma l population with rank i when the
population wi th mean o + (i— l )su has rank i , i = 1,2,... ,k ; the common variance
2 is assumed to be known .

= .90, n = 5

.5 1.0 1 .5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k i
2 1 .838 .754 .653 .539 .422 .312 .216 .139 .084 .047
2 .943 .969 .985 .993 .997 .999 1.000 1.000 1.000 1.000

3 1 .782 .596 .379 .191 .073 .021 .005 .001 .000 .000
2 .882 .832 .753 .652 .538 .422 .311 .215 .139 .084
3 .958 .982 .993 .997 .999 1.000 1.000 1.000 1.000 1.000

4 1 .710 .400 .134 .024 .002 .000 .000 .000 .000 .000
2 .822 .657 .442 .239 .098 .031 .007 .001 .000 .000
3 .90 7 .868 .799 .708 .599 .483 .368 .264 .177 .110 *

4 .96 7 .988 .995 .998 .999 1.000 1.000 1.000 1.000 1.000 *

5 1 .620 .214 .025 .001 .000 .000 .000 .000 .000 .000
2 .746 .444 .161 .031 .003 .000 .000 .000 .000 .000
3 .848 .698 .486 .274 .119 .039 .0 10 .002 .000 .000
4 .922 .890 .828 .743 .639 .525 408 .299 .205 .131
5 .974 .991 .996 .999 .999 1.000 1.000 1.000 1.000 1.000

TABLE IhIC

For the rule R1 and the configuration (o,~ + ISo ,... , j + (k- l ) ’~o) this table gives
the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the norma~ population with
mean + ( i- l)&, has rank 1, i = l ,2,...,k; the common variance - . is assume d
to be known .

= .90, n 5

s /ri .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k

* 
2 1 .361 1.346 1.311 1.262 1.208 1.155 1.107 1.069 1.042 1.023

.890 .862 .819 .766 .710 .655 .608 .569 .542 .523

3 1.807 1.735 1.621 L495 1.382 1.288 1.209 1.144 1.093 1.056
.874 .803 .708 .613 .537 .481 .439 .405 .380 .361

4 2.236 2.06R 1.85(1 1.654 1.499 1.378 1.280 1.198 1.132 1.083
.851 .128 .593 .492 .425 .378 .344 .316 .294 .278

5 2.643 2.34 ? 2.019 1.770 1.583 1.443 1.332 1.240 1.164 1.105
.822 .647 .499 .409 .352 .313 .284 .260 .241 .??6 *

_ _ _ _ _ _ _
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TABLE l ID

For the rule R1 and the configuration ~~~ + iso, . . ,  + (k-l)óo) this table
gives the probabili ty of selecting the norma l populat i on with rank i when
the population with mean ~j + (i-l)oo has rank i , i = 1 ,2,... ,k; the common
variance is assumed to be known .

= .95, n = S

~~~~~ .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k i
2 1 .912 .854 .776 .678 .566 .449 .337 .236 .155 .095
2 .974 .987 .994 .998 .999 1.000 1.000 1.000 1.000 1.000

3 1 .875 .729 .521 .304 .137 .047 .012 .002 .000 .000
2 .939 .905 .848 .769 .670 .557 .441 .328 .230 .150
3 .981 .993 .997 .999 1.000 1.000 ‘.000 1.000 1.000 1.000

4 1 .824 .543 .230 .053 .006 .000 .000 .000 .000 .000
2 .901 .778 .582 .359 .174 .064 .018 .004 .001 .000
3 .953 .928 .881 .811 .721 .615 .499 .383 .277 .187
4 .986 .995 .998 .999 1.000 1.000 1.000 1.000 1.000 1.000

5 1 .753 .335 .054 .003 .000 .000 .000 .000 .000 .000
2 .849 .585 .264 .065 .009 .001 .000 .000 .000 .000
3 .917 .809 .622 .399 .202 .078 .023 .005 .001 .000
4 .962 .941 .899 .837 .754 .652 .539 .422 .311 .215
5 .989 .997 .999 1.000 1.000 1.000 1.000 L000 1.000 1.000

TABLE 1110

For the rule R1 and the configuration (e, e + so ,... ,o + (k-1)óa) this table

gives the expected average rank of the selected subset (top) and the expected
proportion of the populati ons selected in the subset (bottom) when the norma l

* population with mean 0 + (i-l)oo has rank i , i = l ,2,...,k; the comon variance
2 is assumed to be known .

= .95, n = 5

.5 1 .0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

k
2 1 .429 1.414 1.382 1.336 1.282 1.224 1.168 1.118 1.078 1.047

.943 .921 .885 .838 .783 .724 .668 .618 .578 .547

3 1.899 1.839 1.736 1.613 1.492 1.387 1.298 1.220 1.153 1.100
.932 .876 .789 .690 .602 .535 .484 .444 .410 .383

4 2.357 2.216 2.007 1.801 1.629 1.493 1.383 1.289 1.208 1.140
.9 16 .811 .673 .556 .475 .420 .379 .347 .319 .297

5 2.799 2.536 2.208 1.935 1.728 1.569 .445 1.340 1.250 1.172
.894 .733 .568 .461 .393 .346 .312 .285 .262 .243
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The problem of selection of a subset containing the largest location

parameter of severa l double exponential populations has been considered by

Gupta and Leong (1976), and the selection rule proposed in Section 3.0 has

been investigated using both exact and large sample distributions of the sample

median. We include some of the results of Gupta and Leong (1976) for the sake

of completeness , and investigate the problem a little further by numerically

computing the values of the functions P(i ,k,P* ,o ,n IR 1 ) and

defined in Section 5.3 when the location parameter3 of the double exponential

populations are equally spaced. We also compute the ARE of the rule R1 relative

to a rule based on sample means. It is seen in this case that the rule R1

based on sample medians in superior to the rule based on sample means in te rms

of the ARE.

6.1 Selection of the Largest of Location Parameters of Severa l Double
Exponen~T~T~P~~u1ations.

Let r l~
... ,uk be k independent double exponential populations with location

parameters ‘l’ •~~ ‘
0k respectively. For the problem of selecting a subset

contain ing Ek]’ the larges t location parameter , the equation for the constant

d of the rule R is given in Gupta and Leong (1976), and can also be obtained

by substituting

f(u) =~ — e ~~~’12, -~ o < u < = ’

‘1 u/~ u < 0
F( u )= •,

‘

1 - ~ e~~
’2, u - 0

in the equation (3.0.3).
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Since the double exponential distribution has the MLR property , it

follows from Section 3.2 that the rule R1 has the properties mentioned

in that section. This has also been observed by Gupta and Leong (1976).

6.2. On the Performance of the Rule R when the Location Parameters are
EqualTy Spaced.

Suppose the location parameters 
~~~~ ‘

0k of the k given double exponential

populati ons are equally spaced , i.e., = 0 # (1-1)6 , 1 = l ,...,k, where 6 > 0

is a known constant. Then P(i ,k ,P*,6,nIR), the probability with which the rule

selects the population associated with °[i]’ is given by

P(i ,k,P*,6,n~R) = (2ni1~l!~~ j Lh 1 (u~i ,k,P*,IS ,n) + h2(uj i ,k,P*,6,n)]g(u)du (6.2.1)
2(m!) 0

where

k
hi (u!i ,k,P*,6,n) = ~ 

~~~~~~~~~~~~ 
(m+l ,m+l)

J~~1

k
h2(uli ,k ,P* ,6 , n) = H 1 

~ u (d (j j)6)~~ 
(m+l ,m+l)

j—l 1 2 e
j~i

and g(u) = [(1 - ~ e~~)(~ e~~)]
me~~.

* Expressions for the expected sum of ranks

and the expected average rank of the populati ons retained in the subset can

be obtained from (5.3.5) and (6.2.1).

For selected values of k, n and ~~* , tables of the constant d for double

* 
exponential populations are given in ~upta and Leong (1976). Using these tables ,

we have computed the va l ues of the function P(i ,k ,P*,~,nlR ), the expected

average rank and the expected proportion of populations in the selected ~uhset

for n 3, 5, ~)* 
~75, .90, .95, .99 k - ?(l)5 and ~‘ 0.5(0.5)5.0. Computations 

--- ~* , *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~
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were made on a COC 6500 using Gauss Laguerre quadrature based on fifteen nodes

for the numerical integration. Tables are given at the end of this section .

For example if n = 3, P~ .75, k = 5 and 6 = 1.5 , the probability of selecting

the third best, the second best , and the best populations are .108, .794 and 1.000,

in that order. The expected average rank in this case is 1.701 and the expected

proportion of the selected populations is .381 .

6.3 A comparison of rules based on medians and means of large samples

Let 
~~~~ 

, -
~~ 

be k independent double exponential popul ations with means

~~~~ ~~~ 
respectively and common variance unity . Assume that for some

(unknown) index i0 (1 < i0 < k), 0. -~~~ = o . = 0 , i = 1 ,... ,k, I ~ i0, where

-~ - 0 is an unknown constant. Let and denote the sample mean and sample

median of an independent samp le of size n = 2m+1 (m > 1) from 71
1
(i 1 ,... ,k).

For the problem of selecting a subset containing the largest mean o. , the10
following two rules can be used:

~: Select ~i 
1ff 

~
- 

- a/v2m+~ (6.3 .1)

R: Select 1ff 
~ 

- d//2(2m+iJ (6.3.2)

where the constant , a > 0 and d 0 are determined by the basic probability

requirement. If sample size n is sufficiently large , 5~ and X~ are both
• normally distributed with mean and variances 1/(2m+1 ) and l/2(2m+1), respectively.

It is easy to see, as in Section 5.5, that

a d = d , say. (6.3.3)

In the notation of Section 5.5 , let S* be the number of non-best populations

in the selected subset , and let NR I ( ~~
) be the number of r)Dservations needed so that

E(S*IR~) (.
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Follow i ng the method of Section 5.5 we can see that

N~(E) = 2N~ (E)

and hence we have

N ( E )
ARE(R ,~) = lim = 2.

E.+0 R~~

M

A ~*-~~~~~.--• . • -* -~~~~~~~~~~~~~~~~~ _ _ _
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TABLE IV A

For the rule R and the configuration (o ,o + IS ,... ,u + (k—l)o) this table
gives the probability of selecting the double exponential population wi th
rank i when the population wi th mean 0 + (i-1)o has rank i (i = 1 ,... ,k).

= .90, n = 3

-s .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
i~~i 

- -_  _ _ _ _ _ _ _

2 1 .879 .705 .429 .195 .073 .025 .008 .002 .001 .000
2 .986 .996 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1 .814 .335 .050 .005 .000 .000 .000 .000 .000 .000
2 .939 .840 .634 .354 .152 .055 .018 .006 .002 .000
3 .993 .998 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 1 .687 .067 .002 .000 .000 .000 .000 .000 .000 .000
2 .874 .450 .079 .008 .001 .000 .000 .000 .000 .000
3 .960 .894 .737 .468 .219 .084 .030 .009 .003 .001
4 .995 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 1 .483 .007 .000 .000 .000 .000 .000 .000 .000 .000
2 .753 .095 .003 .000 .000 .000 .000 .000 .000 .000
3 .906 .538 .108 .012 .001 .000 .000 .000 .000 .000
4 .97 1 .922 .794 .553 .280 .114 .041 .013 .004 .001

- 
5 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABL E V A

For the rule R and the configuration (o ,o + 6 ,... ,o + (k-1)o) this table gives
the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the double exponential
populati on with mean o + (i-1)s has rank i (i = 1 ,... ,k).

- - 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

k
2 1.425 1.348 1.213 1.097 1.036 1.013 1.004 1.001 1.000 1.000

.932 .851 .714 .598 .537 .513 .504 .501 .500 .500
3 1.890 1.670 1.439 1.237 1.102 1.037 1.012 1.004 1.001 1.000

.915 .724 .561 .453 .384 .352 .339 .335 .334 .333
4 2.324 1.911 1.592 1.355 1.165 1.063 1.022 1.007 1.002 1.001

.879 .603 .454 .369 .305 .271 .257 .252 .251 .250

5 2.7 15 2.099 1.701 1.450 1.225 1.091 1 333 1.010 1.003 1.001
.822 .512 .381 .313 .256 .223 .208 .203 .201 .200 
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TABLE IV B

For the rule R and the configuration (0 ,0 +6 ,... ,o+ (k-l o) this table gives the
probability of selecting the double exponential population wi th rank i when the
population with mean 0 + (i-l)is has rank i (I = 1 , . . .  ,k).

~ .95, n =  3

IS .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k i
2 1 .954 .872 .692 .414 .187 .069 .024 .007 .002 .001
2 .995 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1 .927 .604 .139 .016 .001 .000 .000 .000 .000 .000
2 .978 .939 .832 .618 .339 .144 .052 .017 .005 .002 *

3 .998 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000
4 1 .863 .188 .006 .000 .000 .000 .000 .000 .000 .000

2 .952 .712 .203 .026 .002 .000 .000 .000 .000 .000
3 .986 .960 .888 .723 .451 .209 .079 .028 .009 .003
4 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 1 .739 .027 .000 .000 .000 .000 .000 .000 .000 .000
2 .898 .246 .009 .000 .000 .000 - 000 .000 .000 .000
3 .965 .774 .261 .037 .004 .000 .000 .000 .000 .000
4 .990 .971 .917 .794 .536 .267 .107 .038 .012 .004
5 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE V B

For the rul e R and the configuration (o,o + 6 ,... ,o + (k-l)o) this table gives
the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the double exponential
population with mean 0 + (i—1 )IS has rank i (I = 1 ,... ,k).

= 95, ~ = 3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k
2 1.472 1.435 1.346 1.207 1.093 1.035 1.012 1.004 1.001 1.000

.975 .935 .846 .707 .593 .535 .512 .504 .501 .500
3 1.959 1.827 1.601 1.418 1.226 1.096 1.035 1.011 1.004 1.001

.968 .847 .657 .545 .447 .381 .351 .339 .335 .334
4 2.430 2.123 1.769 1.556 1.339 1.157 1.059 1.021 1.006 1.002

.950 .715 .524 .437 .363 .302 .270 .257 .252 .251
5 2.877 2.345 1.894 1.649 1.431 1.214 1.086 1.031 1.010 1.003

.918 .604 .438 .364 .308 .253 .221 .208 .202 .201 
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TABLE IV C

For the rule R and the configuration (o , 0 + 6 ,... ,0 + (k-1)IS) this table gives
the probability of selecting the double exponential population wi th rank i when
the p( .pu lation with mean e + (i-l )-~ has rank i (1 1 ,...,k).

Pt = .90, n =5

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

2 1 .833 .524 .194 .050 .010 .002 .000 .000 .000 .000
2 .991 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1 .680 .100 .004 .000 .000 .000 .000 .000 .000 .000
2 .914 .708 .350 .108 .024 .005 .001 .000 .000 .000
3 .996 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000

4 1 .412 .006 .000 .000 .000 .000 .000 .000 .000 .000
2 .773 .148 .007 .000 .000 .000 .000 .000 .000 .000
3 .945 .794 .458 .157 .038 .008 .001 .000 .000 .000
4 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000

5 1 .157 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .495 .008 .000 .000 .000 .000 .000 .000 .000 .000
3 .824 .194 .010 .000 .000 .000 .000 .000 .000 .000
4 .960 .841 .538 .203 .053 .011 .002 .000 .000 .000
5 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T.4BLE V C

For the rule R and the configuration (0,0 + 6 ,... ,o + (k-1)o) this table gives the
expected average rank of the selected subset (top) and tne expected proportion of
the populati ons selected in the subset (bottom) when the double exponential population
with mean 1) + (i— l )IS has rank I (1 = 1 ,... ,k).

~ * =  .90, n 5

0.5 1 .0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 *

k
2 1.408 1.260 1.097 1.025 1.005 1.001 1.000 1.000 1.000 1.000

.912 .761 .597 .525 .505 .501 .500 .500 .500 .500
3 1.832 1.505 1.235 1.072 1.016 1.003 1.001 1.000 1.000 1.000

.863 .602 .451 .369 .341 .335 .334 .333 .333 .333
4 2.196 1.671 1.347 1 . 118 1.029 1.006 1.001 1.000 1.000 1.000

.782 .487 .366 .289 .260 .252 .250 .250 .250 .250
5 2.490 1.792 1.436 1.162 1.043 1.009 1.002 1.000 1.000 1.000

.68 7 .409 .310 .241 .211 .202 .200 .200 .200 .200

— --- - -
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TABLE IV 0

For the rule R and the configuration (e,o + 6,... ,e +(k—l)o) this table gives the
probabili ty of selecting the double exponential population wi th rank i when the
population with mean e + (i-1)IS has rank i (i = 1 ,... ,k).

= .95, n = 5

5 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k i
2 1 .933 .756 .405 .132 .031 .006 .001 .000 .000 .000

.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1 .857 .239 .013 .000 .000 .000 .000 .000 .000 .000
2 .969 .871 .600 .248 .069 .014 .003 .000 .000 .000
3 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 1 .668 .018 .000 .000 .000 .000 .000 .000 .000 .000 
*

2 .902 .333 .022 .001 .000 .000 .000 .000 .000 .000
3 .981 .912 .699 .341 .104 .023 .005 .001 .000 .000
4 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 1 .365 .001 .000 .000 .000 .000 .000 .000 .000 .000
2 .736 .026 .000 .000 .000 .000 .000 .000 .000 .000
3 .927 .406 .031 .001 .000 .000 .000 .000 .000 .000
4 .986 .935 .763 .413 .135 .032 .006 .001 .000 .000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLEVD

For the rule R and the configuration (o ,e + 6 ,... ,o + (k—l )o) this table gives
the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the double exponential
popula tion with mean 0 + (1-1)6 has rank i (i = 1 ,...

.95, n 5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k
2 1.464 1.378 1.202 1.066 1.01 5 1.003 1.001 1.000 1.000 1.000

.965 .878 .702 .566 .515 .503 .501 .500 .500 .500
3 1.931 1.660 1.404 1.165 1.046 1.010 1.002 1.000 1.000 1.000

.942 .703 .538 .416 .356 .338 .334 .333 .333 .333
4 2.353 1.855 1.535 1.256 1.078 1.017 1.003 1.001 1.000 1.000

.887 .566 .430 .335 .276 .256 .?51 .250 .250 .250
5 2.712 2.002 1.629 1.331 1.108 1.025 1.005 1.001 1.000 1.000

.803 .474 .359 .283 .227 .206 .201 .200 .200 .200

A - —~~~~~~~~~~~~~~~~~~~ ---_ _ _
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